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Abstract

Nowadays, the high availability of data gathered from wireless sensor networks and telecom-

munication systems, has drawn the attention of researchers on the problem of extracting knowledge

from spatio-temporal data. Detecting outliers which are grossly different from or inconsistent with the

remaining spatio-temporal dataset is a major challenge in real-world knowledge discovery and data

mining applications. In this paper, we deal with the outlier detection problem in spatio-temporal data

and describe a rough set approach that finds the top outliers in an unlabeled spatio-temporal dataset.

The proposed method, called Rough Outlier Set Extraction (ROSE), relies on a rough set theoretic

representation of the outlier set using the rough set approximations, i.e., lower and upper approximations.

We have also introduced a new set, named Kernel Set, that is a subset of the original dataset, which is

able to describe the original dataset both in terms of data structure and of obtained results. Experimental

results on real world datasets demonstrate the superiority of ROSE, both in terms of some quantitative

indices and outliers detected, over those obtained by various rough fuzzy clustering algorithms and by

the state-of-the-art outlier detection methods. It is also demonstrated that the kernel set is able to detect

the same outliers set but with less computational time.
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I. INTRODUCTION

Spatio-temporal data mining is a growing research area dedicated to the discovery of hidden

knowledge in large spatio-temporal databases, mainly through detecting periodic and/or frequent

patterns and outliers. Particularly, outlier detection finds its applications in a broad spectrum of

fields, such as fraud detection, intrusion detection in computer networking, and detecting motion

or abnormal regions in image processing. The presence of outliers makes the modeling difficult

due to the discordance the outliers introduce into the data; in this sense, the outlier detection

task is attractive for two main reasons: the isolation of outliers, as a preventive step, can improve

the performance of the predictive modeling by offering better data quality; on the contrary, the

identification of outliers can be the main goal of the analysis as, for example, in fraud detection.

The most investigated approaches for outlier detection include: 1) distribution-based approaches

that make use of standard statistical distribution to model the data declaring as outliers the objects

that deviate from the model; 2) depth-based techniques which are based on computational geome-

try and compute different layers of convex hulls declaring as outliers the objects belonging to the

outer layers; 3) distance-based approaches which compute the proportion of database objects that

are a specified distance from a target object; 4) density-based approaches which assign a weight

to each sample based on their local neighborhood density. A different classification is based on

the outlier detection output and divides into: labeling and scoring techniques. Labeling methods

partition the data into two non-overlapping sets (outliers and non-outliers) and scoring methods

offer a ranking list by assigning to each datum a factor reflecting its degree of outlierness. These

former methods exploit a hard decision about the sets, the latter ones deal with a sort of soft

decision about the membership of each datum to the set. The proposed method is the first rough

method that improves and upgrades the ”scoring methods”, proposing an effective soft granular

computing based solution exploiting the uncertainty region (boundary) in order to obtain more

reliable results. Indeed, rough-set theory [41] is a paradigm to deal with uncertainty, vagueness

and incompleteness and it is proposed for indiscernibility in classification according to some

similarity. Rough sets were extensively used for data mining but rarely for outlier detection in

general-domain, the same for spatio-temporal specific-domain is hardly ever addressed and never

for outlier detection in spatio-temporal data. In some sense, the few available outlier detection

approaches interpret the rough set theory from the ”operator-oriented point of view” [53]. In
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contrast, our method, called ROSE (Rough Outlier Set Extraction), exploits the set-oriented point

of view of rough set theory in order to define the concept of outlier in terms of its lower and

upper approximations (rough outlier set), keeping into account those objects that can neither

be ruled in nor ruled out as members of the target concept. Performance of ROSE in detecting

outliers is found to be superior to best rough–fuzzy clustering algorithms in terms of various

quantitative indices and to several state-of-the-art outlier detection methods.

Moreover, we introduce the concept of kernel set. Given a dataset, the kernel set is a selected

subset of elements able to describe the original dataset in terms of dataset structure. The paper

includes two different versions of the ROSE algorithm on a test dataset: one adopting, as input

set, the entire set and the other adopting its kernel set. Experimental results show the advantages

of considering the kernel set, in term of computational time, by comparing the rough outlier set

extracted by the original dataset with one extracted by the kernel set.

The paper is organized as follows. In section II an overview on outlier detection approaches is

given. Section III reports some preliminaries about rough set theory relevant to this work, indeed

our approach is rough set based. Section IV introduces the problem and reports the new rough

set approach ROSE to extract the spatio-temporal rough outlier set. Section V introduces the new

set kernel set. Sections VI-A, VI-B, VI-C present executed tests on three real world (benchmark

and test) datasets and the performance evaluation of the algorithm. Finally, conclusion remarks

are given in Section VII about ongoing and future work.

II. RELATED WORK

Most of the existing surveys on anomaly detection focus on a particular application domain

or on a single research area, while the surveys, like [25], [14], [36] and two more recent brief

surveys [44] and [49] are complete works that give the state-of-the-art of anomaly detection

techniques. They group anomaly detection into multiple categories and discuss techniques under

each category. The discussed research issues include many topics to be taken into account

to choose the appropriate outlier detection approach: (i) the detection method (parametric,

i.e., distribution based [7], depth-based [30], [29], [20]; graph-based methods [33], [48]; non-

parametric, i.e., distance-based [31], [4], [43], [46]; density-based [12], [45], [54], [40], [55],

[6]; clustering-based methods [24], [1], [21], [38]; and semi-parametric, i.e., neural network-

based, support vector machine-based techniques); (ii) the nature of the detection algorithm,
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i.e., supervised, unsupervised, semi-supervised detection; (iii) the nature of data, i.e., numerical,

categorical, [11], [18] or mixed data [32], [37]; (iv) the size and the dimensionality of the dataset,

[2], [57], [47]; (v) the nature of the target application [13], [22], [5]. This concerns the outlier

detection methods in general domain. Concerning with specific spatio-temporal (ST) domain,

only a few outlier detection methods have been proposed. Wu, et al. [52] propose a spatio-

temporal outlier detection algorithm called Outstretch, which discovers the sequences of spatial

outliers over several time periods. Birant and Kut [9] present a ST-outlier detection approach

based on clustering concepts called ST-DBSCAN which is an improved version of the clustering

technique DBSCAN [45] that supports also temporal aspects. Cheng and Li [17] further propose a

four-step approach to detect spatio-temporal outliers, i.e., classification, aggregation, comparison

and verification. Wang et al. [50] also propose an approach to outlier detection in spatio-temporal

domain. In a more recent work, Liu et al. [34] deal with the problem of detecting spatio-temporal

outliers and causal relationships among them from traffic data streams.

Rough set theory has been recently introduced in the ST-domain literature for different aspects. In

ST-domain, using the notion of rough sets, Bittner [10] defines approximations of ST-regions and

relations between those approximations. Concerning outlier detection in general domain some

works have been proposed: Nguyen [39] discusses a method for the detection and evaluation of

outliers, as well as how to elicit the background domain knowledge from outliers using multi-

level approximate reasoning schemes; Y. Chen et al. [15] demonstrates an application of granular

computing model using information tables for the outlier detection; F. Jiang et al. [27] proposes

a definition for outliers based on a rough outlier factor (ROF) as degree of outlierness for every

object with respect to a given subset of universe. More recently, the same authors [28] propose

a novel definition of outliers - sequence-based outliers - in information systems of rough set

theory and an algorithm to find out such outliers. Concerning spatio–temporal outlier detection,

no rough set theory based approach has been proposed up to now.

III. ROUGH SET THEORY

Rough set theory, proposed by Pawlak [41], is a new and highly accepted paradigm used to deal

with uncertainty, vagueness and incompleteness. The main idea is based on the indiscernibility

relation that describes indistinguishability of objects. Rough Set Theory (RST) can be approached

as an extension of the Classical Set Theory, for use when representing incomplete knowledge.
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Concepts are represented by lower and upper approximations, according to which rough set

methodology focuses on approximate representation of knowledge derivable from data [42].

A. Indiscernibility and Set Approximation

Let U be the universe of the discourse and A be the finite and non empty set of attributes,

then S = 〈U,A〉 is an information system. Let B a subset of A. With every subset of attributes

B ⊆ A, an equivalence relation IB on U can be easily associated:

IB = {(p, q) ∈ U × U / ∀a ∈ B, a(p) = a(q)} (1)

IB is called B–indiscernibility relation.

If (p, q) ∈ IB, then objects p and q are indiscernible from each other by attributes B. The

equivalence classes of the partition induced by the B–indiscernibility relation are denoted by

[p]B. These are also known as granules. We can approximate any subset X of U using only the

information contained in B by constructing the lower and upper approximations of X . The sets

{p ∈ U : [p]B ⊆ X} and {p ∈ U : [p]B ∩ X �= ∅}, where [p]B denotes the equivalence class of

the object p ∈ U relative to IB, are called the B–lower and B–upper approximation of X in S

and respectively denoted by B(X), B(X). The objects in B(X) can be certainly classified as

members of X on the basis of knowledge in B, while objects in B(X) can only be classified

as possible members of X on the basis of B.

IV. SPATIO-TEMPORAL OUTLIER DETECTION

In this section, the spatio-temporal outlier detection problem is introduced by providing the

problem formalization from a theoretical standpoint, together with its computational solution. A

strict distinction between the spatial and temporal components is proposed in our definition of the

problem. This may result useful in many contexts, e.g., datasets which are characterized by only

spatial information (we intend for spatial not only location information but also features detected

at each location), where the temporal information is implicitly attached or is not present at all.

In all such cases, the distinction allows us to consider just the spatial component, saving space

and time. In this way, time can be differently weighted for finding more efficiently temporal

outlierness and for handling different scenarios where spatial and temporal components get

different importance in the dataset. The proposed approach finds also spatio-temporal outliers.
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A. Problem Definitions

Let us consider an information system S =< U, A > with U a spatio-temporal normalized

dataset and A its set of attributes. U can be written as follows:

U = {pi ≡ (zi1, zi2, ..., zim) ∈ [0, 1]m, i = 1, ..., N}

where pi, i = 1, ..., N is a m-dimensional feature vector and A = {a1, a2, a3, ..., am} is the

attribute set. In the following, we consider that at least three attributes must be present, i.e., the

spatial attributes and the temporal one.

Given U , an integer n > 0 and a measure dpi
(U), defined over every pi ∈ U , the general

definition of the Outlier Detection Problem is as following:

Definition 1: The Outlier Detection Problem consists of finding n ≥ n objects p1, p2, ..., pn,

pn+1, ..., pn ∈ U such that

dp1(U) ≥ dp2(U) ≥ ... ≥ dpn(U) = dpn+1(U)... = dpn
(U) > dpj

(U), ∀j = n + 1, ..., N

According to this definition, the concept of measure is used to determine the degree of dissimi-

larity of each object with respect to all others. Then, the n–Outlier Set can be formally defined

as:

Definition 2: A n–Outlier Set O ⊆ U is the set of n ≥ n objects:

O = {p1, ..., pn, pn+1, ..., pn ∈ U / dp1(U) ≥ ... ≥ dpn(U) = dpn+1(U)... = dpn
(U) >

dpj
(U) ∀j = n + 1, ..., N}

where dpi
(U), ∀i = 1, ..., N is a measure defined and computed on U .

From the definition 2 it follows that τ = dpn(U) is the outlierness threshold, i.e., the minimum

value among the n maximum values of measures computed in U (associated to objects belonging

to the n–Outlier Set), i.e.,

τ = inf{max1(dp(U), dq(U)), ..,maxn(dp(U), dq(U))},∀p, q ∈ U (2)

Starting from the definition of spatial outlier and temporal outlier due to Birant and Alp [9]

asserting: ”a spatial outlier is a spatial referenced object whose non-spatial attribute values are

significantly different from those of other spatially referenced objects in its spatial neighborhood”,

and ”a temporal outlier is an object whose non-spatial attribute value is significantly different

from those of other objects in its temporal neighborhood”, we propose the following definitions

applied only to spatio-temporal data:
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Definition 3: A Spatial Outlier (S–Outlier) is an object whose spatial attribute value is sig-

nificantly different from those of its closer objects (spatial neighborhood).

In this framework, the Spatial Outlier definition corresponds to:

Definition 4: Given U , an integer n > 0 and a measure on spatial component ds
pi

(U), defined

over every pi ∈ U , an object p ∈ U is a S–Outlier iff ds
p(U) ≥ τ where τ is defined in (2).

Following definition 4, it holds that:

Proposition 1: A Spatial Outlier (S–Outlier) is an object that belongs to the spatial n–Outlier

Set indicated by Os.

Similarly, we propose the following definition of Temporal Outlier, applied to only spatio-

temporal data:

Definition 5: A Temporal Outlier (T–Outlier) is an object whose temporal attribute value is

significantly different from those of its closer objects (temporal neighborhood).

In this framework, the Temporal Outlier definition corresponds to:

Definition 6: Given U , an integer n > 0 and a measure on temporal component dt
pi

(U),

defined over every pi ∈ U , an object p ∈ U is a T–Outlier iff dt
p(U) ≥ τ where τ is defined

in (2).

Equally, following definition 6, it holds that:

Proposition 2: A Temporal Outlier (T–Outlier) is an object that belongs to the temporal

n–Outlier Set indicated by Ot.

Definition 3 states that a spatial outlier has no objects or a small group of objects in its spatial

neighborhood. The same is valid for a temporal outlier according to Definition 5. Following both

definitions the following holds:

Definition 7: A Spatio–Temporal Outlier (ST–Outlier) is an object that respects both the

definitions above.

To obtain a real degree of outlierness, an appropriate measure should be associated to each object;

i.e., the Euclidean distance computed between each object and all the other objects belonging

to U . In real applications, characterized by an huge amount of data, this idea is unfeasible due

to its high computational complexity (O(N2)) where N = |U |.
We preserve two aims: on one hand, we exploit the well-known outlier definition based on k-

nearest neighbors [43], in order to associate to each object, a measure based on the distances

among the object itself and its k-nearest neighbors rather than all N objects with k � N ; on the
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other hand, we make use of a pruning strategy that discards objects that surely cannot belong

to the n–Outlier Set, in order to address the problem of alleviating the computational cost.

In a Spatio–Temporal context, the measure associated to each object is based upon the distances

from its spatial k-nearest neighbors and its temporal k-nearest neighbors [3]. Precisely:

ds,t
p (U) = α · ds

p(U) + β · dt
p(U) (3)

where:

ds
p(U) =

k∑

j=1

ds(p, N s(p, pj)), ∀p ∈ U (4)

dt
p(U) =

k∑

j=1

dt(p, N t(p, pj)), ∀p ∈ U (5)

k > 0 is the number of nearest neighbors to keep into account, N s(p, pj) and N t(p, pj) are,

respectively, the j-th spatial nearest neighbor and the j-th temporal nearest neighbor of p, and

α, β weight such that α + β = 1. Definition 1, that introduces the Outlier Detection Problem,

defines the Spatio-Temporal Outlier Detection Problem, by selecting a measure as in (3).

To better illustrate the meanings of the previous and the following definitions, let us consider

the Example, a spatio-temporal dataset E = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., 18} where

pi is a 3-dimensional feature vector and A = {a1, a2, a3} is the essential attribute set, i.e., a1, a2

are the spatial attributes and a3 is the temporal attribute.

E is a labeled dataset, containing 18 elements as reported in Table I of Appendix and plot-

ted in the Figure 1. By fixing k = 3 and n = 4, the outlier sets (spatial, temporal out-

lier sets), on the basis of the previous definitions, are computed as follows. A 4–Spatial

Outlier Set Os ⊆ E is the set of objects p ∈ E that significantly deviate from the rest

of data with respect to the spatial component, i.e., Os = {(0.95, 0.55, 0.50), (1, 0.60, 0.50),

(0.01, 0.01, 0.1), (0.9, 0.9, 0.95)}. A 4–Temporal Outlier Set Ot ⊆ E is the set of objects p ∈
E that significantly deviate from the rest of data with respect to the temporal component,

i.e., Ot = {(0.01, 0.01, 0.1), (0.20, 0.21, 0.3), (0.30, 0.22, 0.3), (0.9, 0.9, 0.95)}. If n = 2, a 2–

Spatio–Temporal Outlier Set Os,t ⊆ E is the set of objects p ∈ E that significantly deviate

from the rest of data with respect to the spatial and the temporal component, i.e., Os,t =

{(0.01, 0.01, 0.1), (0.9, 0.9, 0.95)}. Os, Ot and Os,t are shown in figure 2(a) as diamond and

square, as triangle and square and only square respectively. In figure 2(b), a 2D projection has
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(a) (b)

Fig. 1. (a) The example dataset E and (b) its kernel set.

(a) (b)

Fig. 2. Example dataset: (a) Detected outlier sets (b) their xy-projection.

been reported in order to better visualize that the spatial outliers and spatio-temporal outliers

are spatially far from the rest of data.

B. Rough Outlier Set Extraction (ROSE)

1) Theory: The goal of our approach is to exploit the rough set theory to define the Outlier

Set such as a Rough Outlier Set.

Let S =< U, A > be an information system with U a spatio temporal normalized dataset and A
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its attribute set. If n > 0 is the required outlier number, we want to describe O ⊆ U (n–Outlier

Set) as

< B(O), B(O) > (Rough n − Outlier Set) (6)

where B(O) is the B–Lower approximation and B(O) is the B–Upper approximation of n–

Outlier Set with respect to an attribute subset B ⊆ A.

The B–Lower approximation B(O) is defined as the set of objects that can be certainly classified

as members of the set O on the basis of the knowledge in B, while the B–Upper approximation

B(O) is defined as the set of possible members of O on the basis of the knowledge in B.

With this aim, let IB be the B–indiscernibility relation on the universe U :

IB = {(pi, pj) ∈ U × U : a(pi) = a(pj), ∀a ∈ B}

The equivalence classes [pj]B or granules Gj of the partition induced by IB on U are such that:

U =
⋃N

j=1 Gj and Gj ∩ Gj = ∅, i �= j.

The measure in (3) is used as a spatio-temporal weight ωGj
(s, t, i), to be assigned to every

granule Gj , depending on space, s, and/or on time, t, and at iteration, i. The attribute subsets B

include spatio-temporal attributes, or only spatial and only temporal attribute in order to define

spatio-temporal outlier set, or only temporal set and only spatial outlier set respectively. In this

framework, the B–Lower and B–Upper approximations at iteration i can be defined as follows:

Definition 8: The B–Lower approximation Bi(O) of n-Outlier Set O, at iteration i, is:

Bi(O) = {Gj ⊆ U : ωGj
> τi}

where

τi = inf {maxi
1 (ωGj

, ωGk
), ...,maxi

n (ωGj
, ωGk

)}, ∀ Gj, Gk ⊆ U (7)

Definition 9: The B–upper approximation Bi(O) of n-Outlier Set O, at iteration i, is:

Bi(O) = {Gj ⊆ U : ωGj
> τ i}

where

τ i = τi−1, ∀ i >= 2 (8)
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The threshold τ1 is computed as the minimum value among the n higher values of weights

assigned to the granules at first iteration, then, at second iteration, τ2 will be the new minimum

value among the new n higher values of weights re–assigned to the granules at second iteration

and τ 2 = τ1.

The iterative procedure will stop when the following convergence criterion will be satisfied:

Lemma 1: The construction of the lower approximation B(O) or the upper approximation

B(O) of an n–Outlier Set O converges if it exists an index k such that the threshold does not

vary anymore, i.e.,

if τ k = τk then Bk(O) = Bk(O) (9)

Proof: See Appendix.

Hence, the Rough n–Outlier Set is represented by:

< Bk−1(O), Bk−1(O) > (10)

In case of B = A (every attribute is considered), the granules are:

∀pj ∈ U : {pj} ≡ Gj ∀j = 1, ...., N (11)

so both spatial and temporal components are taken into account.

As instance, let us consider the labeled Example dataset. In this case, the attribute set is A =

{x, y, t}, i.e., x and y are cartesian coordinates and t is the temporal component.

Spatial Outliers

In the case of spatial outliers, the reduction is made in terms of temporal component, i.e.,

B = {t}; so we have the following partition of the universe:

IB = I{t} = {{p1, p2}, {p3, p9}, {p4}, {p5}, {p6}, {p7, p8}, {p10},
{p11}, {p12}, {p13}, {p14}, {p15}, {p16}, {p17}, {p18}}

The concept of Spatial Outlier can be appropriately defined on the basis of knowledge in B =

{t}. Specifically, the B–lower approximation of the Spatial Outlier Set Os, is composed by

the granules completely included into Os, i.e., B(Os) = {{p7, p8}, {p17}, {p18}} and the B–

upper approximation is composed by the granules that have non trivial intersection with Os,

i.e., B(Os) = {{p7, p8}, {p17}, {p18}}. In this case, the upper approximation does not give any

additional information.
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Temporal Outliers

In the case of temporal outliers, the reduction is made by spatial components, i.e., B = {x, y},

getting:

IB = I{x,y} = {{p1, p12}, {p2, p13}, {p3}, {p4}, {p5}, {p6}, {p7},
{p8}, {p9}, {p10}, {p11}, {p14}, {p15}, {p16}, {p17}, {p18}}

The concept of Temporal Outlier can be equivalently get on the basis of knowledge in B =

{x, y}. The B–lower approximation of the Temporal Outlier Set Ot, is composed by the gran-

ules completely included into Ot, i.e., B(Ot) = {{p17}, {p18}} and the B–upper approxima-

tion is composed by the granules that have a non trivial intersection with Ot, i.e., B(Ot) =

{{p1, p12}, {p2, p13}, {p17}, {p18}}. In this case, the notion of rough set arises; indeed the upper

approximation give additional information.

2) ROSE Algorithm: The Rough Outlier Set Extraction (ROSE) Algorithm is designed to

receive as input the universe U , the number k of nearest neighbors and the number n of

outliers to detect. The output of the (iterative) procedure is the Rough Outlier Set (Upper, Lower

Approximation and Negative Region). The algorithm selects, at each step, a small subset of

objects, called WorkingSet, from the overall dataset U . To this aim, ExtractElements extracts a

number of elements equal to a fixed percentage of the cardinality of U that has to be greater than

k. The following main steps are computed. For all selected objects, the procedure computes the

Euclidean distances among the objects in the WorkingSet and all the objects of U , considering

the spatial components, the temporal components or both of them (general case B = A)

depending upon the chosen attribute subset B with respect to the Rough Outlier Set has been

computed. Algorithm ROSE related to the general case has been shown. UpdateUpperApprox

and UpdateLowerApprox at first iteration, create the same set of n top outliers at that step, i.e.,

the n objects that have an associated measure higher than the others. Then, at next iterations,

UpdateUpperApprox and UpdateLowerApprox compute the Lower and Upper approximation of

Rough Outlier Set, using the τ (computed by LowerWeight) and τ prev thresholds as respectively

defined in (7) and (8). At each iteration i, the pruning strategy selects objects from U that

have their measure under the computed threshold in order to build the Negative Region. The

LowerWeight function computes the τ threshold (and consequently τ prev is the saved value

of τ before to be updated). At each iteration, the thresholds have been computed as the weight
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Algorithm 1 ROSE - Rough Outlier Set Extraction

begin ROSExtraction(U, n, k)

LowerOutlierSet = null; UpperOutlierSet = null

ws,t,k(q) = 0

τ prev = 0; τ = 0

WorkingSet = ExtractElements(U)

while (WorkingSet! = null) do

for p ∈ U do

for q ∈ WorkingSet do

if (LowerOutlierSet == null and UpperOutlierSet == null)

or (ws,t,k(q) ≥ τ prev)) then

ds(p, q) = CalculateSpDistance(p, q)

dt(p, q) = CalculateTempDistance(p, q)

BuildTreeKNN(p, q, ds, dt, k)

else

AddNegativeRegion(p)

end if

end for

end for

for q ∈ WorkingSet do

ws,t,k(q) = CalculateWeight(q)

UpperOutlierSet = UpdateUpperApprox(τ prev, n, ws,t,k(q))

LowerOutlierSet = UpdateLowerApprox(τ, n, ws,t,k(q))

end for

τ = LowerWeight(UpperOutlierSet)

if (τ ! = 0) then

τ prev = τ

end if

U = U − WorkingSet

WorkingSet = ExtractElements(U)

end while

end ROSExtraction()
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minimum value among the weight maximum n values, as defined in equation 7). The difference

set between the Universe set and the Negative Region is the Kernel Set.

3) ROSE Algorithm - Time Complexity : The ROSE algorithm has worst-case time complexity

O(|U |2), but practical complexity O(|U |1+d), with d < 1 and U the universe.

V. THE KERNEL SET: RELEVANCE TO OUTLIER DETECTION

The present section introduces a new set, called kernel set, and states that it is a relevant set

for outlier detection. Given a dataset U , the kernel set is a subset, of lower cardinality, that can

be used instead of U , in order to detect the same outlier set. The time complexity reduction of

the use of kernel set is quantified by measuring kernel set dimensionality over that of U .

A. Definition

Let us now define a new set, called Kernel Set, K ⊆ U , as a selected subset of the universe U

that characterizes the overall dataset. Intuitively, this set is a subset of objects of U that maintains

the general structure of the universe U . The Kernel Set is built by construction, in an iterative

way, adding each object having specific properties.

Definition 10: Given U and two integers n > 0, k > 0 (number of nearest neighbors), d(U)

a measure defined on U , the Kernel Set K is built by adding each object p ∈ U such that one

of the following properties holds:

1) dp(U) ≥ τ

2) if dp(U) < τ , then ∃q ∈ U such that p ∈ NNk(q) and dq(U) < τ and dq(K −{p}) ≥ τ

where NNk(q) is the set of k-nearest neighbors of q and d(K) is the restriction of d(U) on

K ⊆ U .

The Definition 10 states that the objects that belong to the Kernel Set are:

1) object p for which dp(U) ≥ τ and hence belongs to n–Outlier Set.

2) object p that, even if dp(U) < τ , is one of the nearest neighbors of an object q for which

dq(U) < τ and dq(K − {p}) ≥ τ .

The second property states that, once these objects p have been added to K, the measure of the

object q becomes less than τ also in K as in U . Otherwise, the global structure of the dataset

should be altered.
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Also, the Kernel Set is built for the Example dataset like:

K = {(0.01, 0.01, 0.1), (0.9, 0.9, 0.95), (0.95, 0.55, 0.5), (1.0, 0.6, 0.5), (0.2, 0.21, 0.3), (0.3, 0.22, 0.3),

(0.3, 0.16, 0.55), (0.35, 0.15, 0.6), (0.15, 0.26, 0.76), (0.16, 0.34, 0.77)}.
This set is also reported in Figure 1(b). The Kernel Set contains all elements of the Outlier Set.

B. Properties

Let us start to prove the following propositions related to the new set.

Proposition 3: The measure computed in K is an upper bound of the measure computed in

U such that:

dp(U) ≤ dp(K), ∀p ∈ U

where dp(U) =
∑k

j=1 d(p, N(p, pj)) and N(p, pj) is the j-th nearest neighbor of p.

Proof: See Appendix.

The following proposition is valid:

Proposition 4: A Kernel Set contains the n–Outlier Set: K ⊇ O.

Proof: ∀p ∈ O : dp(U) > τ ⇒ p ∈ K

The proof clearly follows from definition of K.

Proposition 5: The Outlier Set OK , computed starting from Kernel Set K is a superset of O

computed from U :

OK ⊇ O

Proof: See Appendix.

C. Significance to Outlier Detection

The kernel Set is a meaningful subset of the universe U with the following properties:

• Kernel Set is a subset with lower cardinality than U

• the ”same results” in terms of rough outlier set are obtained using Kernel Set instead of U

• Kernel Set can be considered as the model learned during a training phase.

In the following, we propose the comparison between the obtained results, in terms of rough

outlier set, executing ROSE algorithm, once using, as input, the entire universe U and another

time computed using, as input, the kernel Set K.
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D. Computational Benefits

Let us consider the two versions (or runnings) of ROSE algorithm, in order to appreciate the

computational benefits. At the first run, ROSE algorithm receives, as input, the entire dataset

U , whilst at the second run, ROSE receives the kernel set K of U that is a subset of U . A

computational benefit, coming from using kernel set instead of the entire universe, is derived.

Indeed, O(|U |1+d) < O(|K|1+d), being K ⊂ U . To quantify the computational benefits coming

from the use of the kernel set, we evaluate the dimensionality of kernel set K with respect to

U . The experimental results have been provided in the following section VI-D.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Our outlier detection method is based on rough set theory and is specific for spatio temporal

data. At the best of our knowledge there is no rough approach to outlier detection for spatio

temporal data to compare with. Hence, three different experimental tests have been executed. The

first test is oriented to demonstrate the ability of the outlier detection algorithm and the role of

the kernel set working on a real world spatio temporal dataset; the comparisons on this dataset

are made using rough-fuzzy clustering methods. The second test is intended to compare our

results with other outlier detection methods (also rough-oriented) for general domain on a UCI

repository dataset. The third test is oriented to compare our performance with outlier detection

methods (not rough approach) tailored for spatio temporal domain, on a spatio temporal dataset.

Two subsections VI-D and VI-E end this section: one concerning an experimental evaluation of

the dimension reduction percentage of the kernel set with respect to its starting dataset U and

one concerning a sensitivity analysis about the parameters k and n of the algorithm.

A. School Buses dataset

For the first test, we make tests on a real-world dataset, named School Buses [19]. The dataset

is publicly available and consists of 145 trajectories (about 69000 entries) of 2 school buses

collecting and delivering students around Athens metropolitan area in Greece for 108 distinct

days. The structure of each record is as follows: {obj id, traj id, date, time, lat, lon, x, y}
where obj id is the school bus identification, traj id is the unique trajectory identification,

the date and time are the sampling timestamps every 30 seconds (date in dd/mm/yyyy format

and time in hh:mm:ss format), the (lat, lon) and (x, y) are the bus location, in WGS84 and in
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(a) (b)

Fig. 3. School Buses dataset: (a) Normalized dataset (b) Testing subset with added temporal outliers highlighted in gray color.

GGRS87 reference systems, respectively. In our case, the obj id and traj id are not considered,

date and time fields are converted in just one field t consisting of a time string corresponding

to the elements year, month, day, hour, minute and second. Moreover, the lat and lon are

redundant and are not considered, since x and y give the same information. Hence, the normalized

representation of the dataset is illustrated in figure 3(b): in a 3D cartesian reference system, x

and y are the spatial coordinates and the third dimension is time t. In Figure 3(a) the trajectory

map of School Buses is shown. In the following Figure 3(c), the testing dataset consisting of

half of the original dataset (about 30000 entries) with some added temporal outliers is shown.

1) Rough Outlier Set Extraction - Spatial Rough Outlier Set Extraction from U : Let U denote

the spatio-temporal normalized School Buses dataset

U = {pi ≡ (zi,1, zi,2, zi,3) ∈ [0, 1]3, i = 1, ..., N}

where (zi,1, zi,2) are cartesian coordinates of the i–th object, zi,3 is the relative timestamp. Let

< U, A > be the information system, with the attribute set A = {x, y, t}, i.e., x and y are the

spatial components and t is the temporal component.

We want to describe O ⊆ U (Outlier Subset) as the rough outlier subset < B(O), B(O) >

where B ⊆ A is constituted by the spatial attributes, (x, y). Selecting only spatial components,

the results of selected iterations, an intermediate step, the last–1 and the last one have been

shown. Specifically, the lower, upper approximation (lower and boundary) at an intermediate step

of Spatial Rough Outlier Set are represented and shown in Figure 4(a) and Figure 4(b), where
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boundaries are reported in gray color. Figure 4(c) and 5(a) show the lower, upper approximation

(a) (b) (c)

Fig. 4. (a) Intermediate Step: Lower Approx (b) Intermediate Step: Lower Approx U Boundary (c) Last-1 Step: Lower Approx.

(lower and boundary) at last-1 step, while Figure 5(b) and (c) shows the same approximations

at last step. In the last figure, we can see the advantages of keeping into account the boundary.

(a) (b) (c)

Fig. 5. (a) Last-1 Step: Lower Approx U Boundary (b) Last Step: Lower Approx (c) Last Step: Lower Approx U Boundary

Otherwise, many interesting objects (belonging to the boundary) should be missed.

2) Rough Outlier Set Extraction - Spatio-Temporal Rough Outlier Set Extraction from U :

Let < U, A > be the information system, with the attribute set A = {x, y, t}, i.e., x and y are

the spatial components and t is the temporal component. Now we are considering B = A, so

we are looking for spatio–temporal Rough Outlier Set.

The spatio-temporal outliers will be more relevant than spatial and temporal outliers (see temporal

outliers injected in the Figure 3(b)). Hence, the lower approximation includes the most part

of spatial and temporal outliers, while the upper approximation includes the remaining part

November 18, 2012 DRAFT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , DECEMBER 2011 19

of temporal outliers and some other spatial outliers have been detected. In this section, we

show the lower, lower approximation with boundary at last step. Figure 6(a) shows the lower

(a) (b) (c)

Fig. 6. (a) Last Step: Lower Approx (b) Last Step: Lower Approx U Boundary (c) School Buses Dataset: its Kernel Set.

approximation, while Figure 6(b) shows the lower approximation with boundaries in gray color.

3) Rough Outlier Set Extraction - Spatial Rough Outlier Set Extraction from the Kernel Set:

The section reports the tests aimed to demonstrate the use of the Kernel Set. This set is a

selected subset, able to describe the original dataset both in terms of data structure and in terms

of obtained results. In particular, we want to show the advantages of using this set and the benefits

of considering it. To this aim, we show the Rough Outlier Set extracted by the universe U and the

Rough Outlier Set extracted by the Kernel Set. The results show the advantages of considering

this set. Figure 6(c) shows the kernel set of School Buses dataset. Starting from the Kernel Set,

the Rough Outlier Set is built by our approach ROSE. Let be B ⊆ A constituted by the spatial

attributes, i.e., (x, y). Selecting only spatial components, the results of last iteration of the test

of Spatial Rough Outlier Set Extraction from the Kernel Set is reported. Figure 7(a) shows the

lower approximation at the last iteration, while Figure 7(b) shows the lower approximation with

boundaries in gray color. Thus, we compare these results with the last test of Rough Outlier Set

Extraction from the entire Universe U , shown in Figure 5(c). Comparing Figure 5(c) and Figure

7(b) we can appreciate that the results are quite similar with an interesting computational benefit

coming from considering the Kernel Set instead of the entire universe U .

4) Quantitative Measures and Indices: In this section, we use performance indices as intro-

duced by Maji and Pal in [35] such as α index, ρ index and γ index, to evaluate the performance

of our algorithm compared with Hard C-Means and with other rough–fuzzy clustering algorithms,
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(a) (b)

Fig. 7. ROSE Results from Kernel Set of School Buses Dataset - Last Step: (a) Lower Approx (b) Lower Approx U Boundary.

TABLE I

SPATIAL OUTLIER DETECTION - QUANTITATIVE EVALUATION OF ALGORITHMS - CHOSEN INITIAL CENTROIDS.

Methods α Index ρ Index γ Index
ROSE 0.9836 0.0164 0.9987
RFCM 0.5448 0.4551 0.9250
RPCM 0.4725 0.5274 0.7919

RFPCM 0.5645 0.4354 0.9007

Legenda:
ROSE = Rough Outlier Set Extraction

RFCM = Rough Fuzzy C-Means
RPCM = Rough Possibilistic C-Means

RFPCM = Rough Fuzzy Possibilistic C-Means

incorporating the concepts of rough sets. So, the algorithms adopted for comparison are: Hard

C-Means, RFCM - Rough Fuzzy C-Means, RPCM - Rough Possibilistic C-Means, RFPCM -

Rough Fuzzy Possibilistic C-Means. To analyze the performance of our proposed algorithm,

tests have been performed on the School Buses dataset. Figures 8(a) and (b) show the clusters

computed by Hard C-Means clustering algorithm (number of clusters set to 2) in spatial and

spatio-temporal outlier detection respectively. Figures 8(c) and (d) - 9 show the results of each

rough-fuzzy algorithm in spatial outlier detection. In figures 9(a) and 9(c), the two clusters are

drawn with gray and black colors after the assignment of the boundary to clusters, while in the

figures 9(b) and 9(d) the boundaries (before the assignment) are drawn with light gray color.

Figures 10-11 show the results of rough-fuzzy algorithms in spatio-temporal outlier detection.

The parameters have been set as follows: c = 2 (Inlier and Outlier Cluster), ω and ω̃ are equal

to 0.5 in order to give the same importance to the lower approximation and to the boundary.

Several runs have been done with different initializations and different parameters, related to

initial centroid choice. These parameters have been maintained constant across all runs. The

tests show that the best results are obtained for particular choices of initial centroids rather than
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TABLE II

SPATIO-TEMPORAL OUTLIER DETECTION - QUANTITATIVE EVALUATION OF ALGORITHMS - CHOSEN INITIAL CENTROIDS.

Methods α Index ρ Index γ Index
ROSE 0.8941 0.1059 0.9514
RFCM 0.3549 0.6450 0.6444
RPCM 0.3283 0.6716 0.5914

RFPCM 0.3651 0.6348 0.6618

(a) (b) (c) (d)

Fig. 8. Hard C-Means Clusters Results: (a) spatial outlier detection (b) spatio temporal outlier detection – Spatial Outlier

Detection: (c) RPCM Clusters Results (d) RPCM Clusters Results with boundary.

(a) (b) (c) (d)

Fig. 9. Spatial Outlier Detection: (a) RFCM Clusters Results (b) RFCM Clusters Results with boundary (c) RFPCM Clusters

Results (d) RFPCM Clusters Results with boundary.

for random choices of initial centroids. So, we report only the final prototypes of the best solution.

Table I and Table II report the best results obtained using different algorithms for c = 2 in case

of the same choice of initial centroids for HCM, RFCM, RPCM and RFPCM. Table I and Table

II compare the performance of these different rough–fuzzy clustering algorithms with respect to

α, ρ, γ in Spatial and Spatio-Temporal Outlier Detection respectively. The results reported in

Tables I and II establish the fact that, although the hybridization versions of c–means algorithm

were not designed as outlier detectors, they generate good prototypes for c = 2. In Spatial Outlier

Detection, the RFPCM provides the best results as shown in Figure 9; the results of other two
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(a) (b) (c)

Fig. 10. ST Outlier Detection: (a) RPCM Clusters Results (b) RPCM Clusters Results with boundary (c) RFCM Clusters

Results.

(a) (b) (c)

Fig. 11. ST Outlier Detection: (a) RFCM Clusters Results with boundary (b) RFPCM Clusters Results (c) RFPCM Clusters

Results with boundary.

versions of rough clustering are quite similar to that of the RFPCM, while in Spatio-Temporal

Outlier Detection, the RPCM outperforms them as shown in Figure 10. The proposed ROSE

algorithm performs better than HCM, RFCM, RPCM and RFPCM algorithms, both in terms of

some qualitative measures and in terms of outliers detected, as shown in figures 6(a) and 6(b).

B. Wisconsin Breast Cancer Dataset

For the second test, the real-life dataset, named Wisconsin Breast Cancer [8] is used. The

dataset is publicly available on UCI machine learning repository and consists of 699 instances

with 9 continuous attributes. In order to compare our results, the experimental technique of

Harkins et al. [23] by removing some malignant instances to form a very unbalanced distribution

has been employed. The resultant data set had 483 instances (39 (8 %) malignant and 444 (92%)

benign instances). The 9 continuous attributes are not transformed into categorical attributes.
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TABLE III

ROSE RESULTS (LOWER / UPPER APPROX): COMPARISON ON WISCONSIN BREAST CANCER DATASET.

Top Ratio Number of rare classes included (Coverage)
ROSE - Low ROSE - Upp SEQ DIS NED KNN RNN

1%(4) 4(10%) 6(15%) 3(8%) 4(10%) 4(10%) 3(8%) 4(10%)
2%(8) 8(20%) 11(28%) 7(18%) 5(13%) 5(13%) 6(15%) 8(21%)

4%(16) 16(41%) 22(56%) 14(36%) 11(28%) 11(28%) 11(28%) 16(41%)
6%(24) 23(59%) 28(72%) 21(54%) 18(46%) 18(46%) 18(46%) 20(51%)
8%(32) 28(72%) 35(90%) 28(72%) 24(62%) 24(62%) 25(64%) 27(69%)
10%(40) 33(85%) 37(95%) 32(82%) 29(74%) 29(74%) 30(77%) 32(82%)
12%(48) 37(95%) 38(97%) 35(90%) 36(92%) 36(92%) 35(90%) 37(95%)
14%(56) 38(97%) 39(100%) 39(100%) 39(100%) 38(97%) 36(92%) 39(100%)
16%(64) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%) 36(92%) 39(100%)
18%(72) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%) 38(97%) 39(100%)
20%(80) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%) 38(97%) 39(100%)

28%(112) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%)

1) Results and Comparison: In order to demonstrate the performance of our approach against

traditional distance-based method (DIS), Neighborhood outlier detection algorithm (NED) [16],

KNN algorithm [43], sequence-based outlier detection algorithm (SEQ) [28], RNN-based outlier

detection method, all the other results about the Coverage (ratio of the number of rare classes

Included to the number of objects in U belonging to that class) on this dataset can be found in

the work of Harkins et al. [23] and Willams et al. [51]. Our results have been shown in Table

III in the two related columns. For almost all considered Top Ratio values, ROSE performance,

considering just the lower approximation, is higher than other methods and only sometimes

equal to them. Indeed, the l.a. results go under SEQ, DIS and RNN only for Top Ratio equal to

14%. Instead, considering the upper approximation, i.e., the rough set contribution, the results

are always higher or at least equal to all the other methods.

C. Grand St. Bernard WSN Dataset

Finally, our method has been also tested on a publicly available WSN data set named the

Grand St. Bernard [26]. This dataset has been collected by a multi-hop wireless sensor network,

deployed at the Grand St. Bernard pass, located between Switzerland and Italy running northeast-

southwest through the Valais Alps. The deployment consists of 23 sensor nodes, measuring

meteorological characteristics of the environment, during a period of two months (September-

October 2007) with the sampling frequency of two minutes. The nodes are grouped in two

clusters: a small cluster consists of 5 nodes and a big cluster consists of 18 nodes.
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TABLE IV

ROSE RESULTS: COMPARISON ON GRAND ST. BERNARD DATASET - SPATIAL AND TEMPORAL OUTLIERS.

Methods Running Average Mahalanonis Dist. Density
DR(%) FPR(%) DR(%) FPR(%) DR(%) FPR(%)

TOD: 72.3 10.5 100 15.0 100 15.1
ROSET Low: 80 1.2 96 1.0 100 0
ROSET Upp: 87.5 1.7 100 1.2 100 0
SOD: 24.5 3.3 100 4.3 100 4.4
POD: 29.8 1.8 80 3.7 75 3.8
ROSES Low: 96.2 1.0 92 1.0 92 0.3
ROSES Upp: 98.1 1.2 96 1.1 100 1.1

1) Results and Comparison: This spatio temporal dataset, as most of spatio-temporal dataset,

is not provided by a ground truth file. The methods TOD, SOD, POD, due to Zhang et al. [56],

use this dataset labelled with three different methods, showing the different results on the basis

of the three different techniques. The tests have been executed on the 30th of September 2007

(06:00-14:00) and on the small cluster of 5 station (nodes: 25, 28, 29, 31, 32). The ambient

temperature is the analyzed feature for each station. For temporal labelling, it was necessary

to eliminate the dependency of the spatial domain, considering each sensor at a time. On the

contrary for spatial labelling, all sensors (belonging to the cluster) have been considered at

the same time. Table IV shows the ROSE results (ROSES and ROSET indicate the ROSE

running for spatial/temporal outlier detection respectively) and the best tradeoff between DR%

and FPR of the reported results for Zhang’s TOD, SOD, POD. Concerning the temporal outlier

detection, ROSET Upp works always better than or comparable with TOD with a negligible

percentage of false positives; even ROSET Low works better than TOD on two of the three

labelling techniques. Concerning the spatial outlier detection, ROSES Upp and even ROSES

Low work always better than POD with a negligible percentage of false positives on all labelling

techniques; ROSES Upp and even ROSES Low work highly better than SOD with a negligible

percentage of false positives on running average technique and in a bit lower or comparable way

than SOD on the other two labelling techniques. Globally, the achieved ROSE results outperform

the compared state-of-the-art techniques on this spatio-temporal dataset.

D. Kernel Set Dimension

Experimental computations, about the dimension reduction between four analyzed datasets

and their kernel sets, have been widely executed. The kernel sets dimensions, reported in the
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TABLE V

KERNEL SET DIMENSION COMPUTATION ON DIFFERENT DATASETS.

Dataset Name Universe cardinality Kernel set cardinality Reduction %
School Buses 30414 17101 13313 (44%)

Wisconsin Breast Cancer - Original 699 486 213 (30%)
Wisconsin Breast Cancer - Unbalanced 483 308 175 (36%)

Grand St. Bernard Dataset 2101 1535 566 (27%)

table V are the average dimensions on ten executions, varying the input parameters of the

ROSE algorithm. The computed data provide an average value of reduction percentage equal to

46%. The analyzed datasets are the following: School Buses, Wisconsin Breast Cancer (original

version), Wisconsin Breast Cancer (unbalanced version), Grand St. Bernard. This reduction

significantly drops down the algorithm time complexity and hence its computational cost.

E. Sensitivity analysis of input parameters

This subsection ends this evaluation section and is intended to conduct a sensitivity analysis

about the input parameters k and n of the algorithm in order to evaluate the algorithm behaviour.

The comparison have been done on the Wisconsin Breast Cancer Dataset doing several different

combinations of k and n parameters. In particular, the n and k parameters have been chosen in

the following way: 1) keeping the value of n fixed (at 40, at 60) the value of k was varying

at 1, 5, 9, 15, 25, 30, 45 and 2) keeping the value of k fixed (at 30, at 45) the value of n was

varying at 30, 40, 50 and 60. The results have been shown in the following figures: the first

couple of figures 12(a) and 12(b) shows the accuracy curves for k = 45 and k = 30 varying n;

the second couple of figures 13(a) and 13(b) shows the accuracy curves for n = 40 and n = 60

varying k. Then, the figures 12(c) and 12(d) and the figures 13(c) and 13(d) show the false alarm

probability curves for k = 45 and k = 30 varying n and those for n = 40 and n = 60 varying

k, respectively. For n = 50 and k = 45 a reversal trend between lower and upper approximation

as for n = 40 and a bit lower accuracy for n = 50 respect to n = 40 clearly appear. Hence,

increasing too much the number n of outliers to be searched not surely improve the results. A

zero false alarm probability has been reported in both cases for k = 45.

VII. CONCLUSIONS

The manuscript extends outlier detection using a new rough set approach to spatio-temporal

data. Specifically, the rough set based outlier detection method has been theoretically grounded
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(a) (b) (c) (d)

Fig. 12. Wisconsin Breast Cancer Dataset - for two fixed k values: (a) Accuracy: lower approximation (b) Accuracy: upper

approximation (c) False Alarm Probability: lower approximation (d) False Alarm Probability: upper approximation.

(a) (b) (c) (d)

Fig. 13. Wisconsin Breast Cancer Dataset - for two fixed n values: (a) Accuracy: lower approximation (b) Accuracy: upper

approximation (c) False Alarm Probability: lower approximation (d) False Alarm Probability: upper approximation.

based on a definition of outlier set as rough set. A remarkable note should be made for the defini-

tion of a new set, called kernel set, that has been demonstrated to be able to generate the ”same”

output results in terms of rough outlier set with time computational benefits. The experimental

results on three real world datasets prove that the performance of ROSE in detecting outliers

are superior when compared to several other methods. On the real world School Buses dataset,

ROSE has been compared with C-Means clustering algorithm and other rough-fuzzy clustering

algorithms (Rough Fuzzy C-Means, Rough Possibilistic C-Means, Rough Fuzzy Possibilistic

C-Means), incorporating the concepts of rough sets, producing reasonable results both in terms

of quantitative and qualitative standpoints. On the benchmark Wisconsin Breast Cancer dataset,

ROSE has been also compared with several state-of-the-art outlier detection methods, also rough-

oriented, for general domain (SEQ, DIS, NED, KNN, RNN), demonstrating higher, and just

sometimes comparable, performance. Another comparison has been made on the WSN Grand

ST. Bernard dataset with spatio-temporal methods (Zhang’s TOD, SOD, POD) that use the same

dataset, demonstrating the ROSE superiority even in this case. The approach is computationally

less intensive compared with these approaches. The ROSE algorithm appear to consistently
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outperform other rough and not rough approaches in medium to large problem settings, showing

to be able to do well also on datasets of varying sizes. Since spatio-temporal outlier detection

might turn out to be useful in many different research fields, we hope that this work will spark

further interest in such problems which are challenging and relatively unexplored.
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